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Fine- scale variation in temperature and humidity has major impli-
cations for plant phenology, distribution, and fitness but is difficult 
to capture using climate models. Until relatively recently, obtaining 
empirical data that demonstrate climatic heterogeneity at fine scales 
across the landscape required the deployment of costly and con-
spicuous equipment (e.g., Wethey, 2002; Lundquist and Lott, 2008), 
inhibiting long- term or widespread deployment. The availability of 
affordable, compact, self- contained temperature and humidity data 
loggers such as iButtons (Maxim Integrated, San Jose, California, 
USA) has enabled biologists to generate empirical data of unprece-
dented quantity and quality. Although such sensors have been used 
in field biology applications for more than two decades, opportuni-
ties and challenges remain to effectively use them.

This technology provides opportunities to develop a more nu-
anced understanding of the factors underlying plant phenology, 
such as the timing and temperature requirements for vernaliza-
tion and flowering time, which have important applications in ag-
riculture and primary productivity more generally. Furthermore, 
microclimatic conditions (climate conditions of a scale as fine as 
1  m, particularly when the surrounding area has a different cli-
mate) influence biogeochemical dynamics such as decomposition, 
which governs plant- available nutrients (Todd- Brown et al., 2012). 
Another valuable use for data loggers is to identify and characterize 
microclimates that may serve as important refugia through space 
and time for rare or endangered species. Ultimately, the incorpo-
ration of microclimate data can serve a valuable role in validating 
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as iButtons has facilitated research on microclimates.

METHODS AND RESULTS: Here, we highlight the use of iButtons in three distinct settings: 
comparisons of empirical data to modeled climate data for rare rock ferns in the genus 
Asplenium in eastern North America; generation of fine- scale data to predict flowering time 
and vernalization responsiveness of crop wild relatives of chickpea from southeastern Anatolia; 
and measurements of extreme thermal variation of solar array installations in Vermont.

DISCUSSION: We highlight a range of challenges with iButtons, including serious limitations 
of the Hygrochron function that affect their utility for measuring soil moisture, and methods 
for protecting them from the elements and from human interference. Finally, we provide 
MATLAB code to facilitate the processing of raw iButton data.
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and improving increasingly complex climate models (Botkin et al., 
2007; Dobrowski, 2011; Lembrechts et al., 2018).

The use of correlative species distribution models is the most 
prevalent means of predicting the impacts of climate change on 
biodiversity (Franklin et  al., 2013). These models typically apply 
a climate envelope to existing species distribution, i.e., climatic 
niche, with the prediction that the species will track that envelope 
through space and time, most commonly upslope or pole- ward 
under warming conditions (Moritz and Agudo, 2013). In addition 
to predicting the future range of species of conservation concern, 
they are used to evaluate the potential for the expansion of invasive 
species (Jeschke and Strayer, 2008). Climate envelope models have 
been used to assess potential invasiveness and to screen plant in-
troductions in Australia, New Zealand, the Galápagos Islands, and 
Hawaiian Islands (Pheloung et al., 1999; Rogg et al., 2005; Daehler 
et al., 2004; but see Mandle et al., 2010).

A fundamental criticism of this approach is the lack of under-
standing of underlying variables and limiting factors responsible 
for current or future species distributions and the scales at which 
they are biologically relevant, as well as the inherent uncertainty in-
volved in extrapolation (Pearson and Dawson, 2003; Williams and 
Jackson, 2007). Models may overestimate risk of extinction because 
they do not account for heterogeneity of climate and warming rates 
at the landscape scale, and fail to identify potential climate refugia 
(Ashcroft, 2010).

Correlative predictive models may be well suited to character-
izing climatic niche in certain contexts, in particular across ho-
mogeneous landscapes where atmospheric temperature is closely 
correlated with surface conditions. However, most models rely on 
coarse- scale resolution, rarely <1 km, and fail to capture microcli-
mates that vary on a scale of tens to hundreds of meters or less, 
especially across topographically complex landscapes (Sears et al., 
2011; Moritz and Agudo, 2013; Lembrechts et al., 2018). The scale of 
the species distribution model itself may have a major influence on 
projected range, with coarser scales potentially overestimating hab-
itat. Franklin et al. (2013) found that a larger- scale model (4 km2) 
overestimated stable species habitat by an average of 42% compared 
to a finer- scale model (800 m) in a comparison of 52 California 
plant species, and that species with narrow ranges showed the 
greatest incongruity of predicted ranges between grid sizes. The 
discrepancy between predictions in areas of extreme topographic 
heterogeneity may be even greater. Randin et al. (2009) predicted a 
total elimination of suitable alpine habitat during the 21st century 
applying a 16- km grid, in contrast to the persistence of as much as 
100% of habitat when analyzed with a 25- m grid, highlighting the 
importance of fine- scale landscape heterogeneity and microclimate 
in buffering the effects of changing climate (Willis and Bagwhat, 
2009; Ackerly et al., 2010; Lenoir et al., 2013).

Microclimates result from the interaction between regional 
advective influences and local terrain (e.g., Dobrowski, 2011). 
Within an area of 16 km2 (a typical grid size employed by climate 
models), temperature may vary by as much as 33°C (Hijmans 
et  al., 2005). The primary topographic features responsible for 
this variation are: elevation, valleys or basins, slope, and aspect, 
which manifest as local differences in precipitation, wind, in-
solation, cold air drainage, evapotranspiration, snowmelt, and 
accumulation (Dobrowski, 2011). In addition to topography, 
the effects of prevailing winds, proximity to water, and zones of 
high relative water availability, including rock outcrops, seeps, 
fog belts, and canopy cover, also contribute to microclimates 

(Ashcroft et al., 2010; De Frenne et al., 2013; McLaughlin et al., 
2017). The spatiotemporal scale at which climate is biologically 
important will differ according to taxon, but for sessile organ-
isms like plants, fine- scale differences are important (Lembrechts 
et al., 2018). Because microclimates are often loosely coupled to 
regional climate, they may serve as important buffers to climate 
change. Identifying microclimates on the landscape and under-
standing how they are utilized by the species occurring within 
them are essential to project the impacts of climate change. Based 
on fossil evidence, microclimates may have served as important 
refugia during past periods of climate change (Petit et al., 2008; 
Hof et al., 2011; Willis and MacDonald, 2011; Moritz and Agudo, 
2013), and understanding their conservation potential should be 
a research priority (Keppel et al., 2012, 2015).

Understanding the extent of adaptation to microclimates is also 
potentially important to harnessing crop wild relatives in breeding 
programs (e.g., Warschefsky et  al., 2014). For example, crop wild 
relatives from 1- km grid cells with overall arid conditions may mis-
lead researchers using methods like the Focused Identification of 
Germplasm Strategy (FIGS; Khazaei et al., 2013) into believing they 
hold drought- adapted ecotypes if local populations are restricted to 
humid or mesic microsites. The finer- scale information provided by 
iButtons can supplement such models and provide greater insight 
into microsite preferences.

Effective conservation strategies also depend on understand-
ing microclimate variation. Many recent coarse- scale models 
predict catastrophic loss of climatic niches under warming sce-
narios (e.g., Thomas et al., 2004; Dullinger et al., 2012). In stark 
contrast, Scherrer and Körner (2011) demonstrated remarkable 
buffering capacity provided by topographically induced micro-
climates in the Swiss Alps, using empirical data recorded using 
iButton data loggers to measure soil temperature. Within an area 
of 2 km2, the recorded mean annual temperatures in the soil dif-
fered by as much as 10.5°C from air temperatures. Based on their 
measurements, under a 2°C warming scenario (Pachauri et  al., 
2014), only the coolest 3% of habitat will be lost, and the migra-
tion distances required for species to track their current climatic 
envelope are within meters. In this alpine study site, meter- scale 
soil temperature variation is greater than the extent of expected 
warming in Intergovernmental Panel on Climate Change projec-
tions for the next 100 years.

Consequently, more precise methods can improve our capac-
ity to predict the distribution and phenology of species that may 
depend on microclimates. Data loggers such as iButtons have the 
capacity to measure temperature at desired intervals, generating 
precise data for conditions aboveground, at the soil surface, and 
underground. These data can be useful for developing pheno-
logical models, which can better account for the mechanisms by 
which plant emergence, flowering, and senescence may need to 
shift to account for varying climatic conditions. Plant phenolog-
ical models take many forms, with a number of variants being 
widespread in the agricultural literature (e.g., Boote et al., 1998; 
Jones et  al., 2003) and the Arabidopsis literature (e.g., Wilczek 
et al., 2009; Chew et al., 2012), where the extensive detail needed 
to parameterize such models is available. Photothermal models 
like that of Chew et al. (2012) account for both day length and 
temperature, as well as vernalization, incorporating the effect of 
genetic variants in key pathways affecting phenology. The inclu-
sion of precise temperature data from sites of origin improves the 
accuracy of these models.
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METHODS AND RESULTS

Three case studies using iButton data loggers

We present three case studies representing different applica-
tions of fine- scale temperature measurements for studying the 
effects of microclimates in plant biology. The first study com-
pares empirically derived iButton data to modeled PRISM and 
WorldClim climate data for six temperature variables to illus-
trate fine- scale microclimatic conditions of a habitat specialist 
that are not captured by a 1- km or 4- km grid, to illustrate the 
scale of discrepancy that may be anticipated from different ap-
proaches. The second case examines the effect of microclimate 
on growth conditions to predict flowering time and vernalization 
responsiveness in two crop wild relatives, which provide a ba-
sis for parameterizing phenological models. The third example 
demonstrates microhabitat gradients caused by the built environ-
ment, highlighting the complex dynamics of soil temperature and 
moisture resulting from solar installations in a snowy northern 
climate. We highlight these examples in the 
context of the diverse applications of iButtons 
in plant biology, and discuss important ex-
perimental considerations and limitations of 
the technology and strategies for addressing 
them. Finally, we provide MATLAB code for 
processing and analyzing raw iButton data, 
which is useful when large numbers of loggers 
have been used.

Case study 1: A comparison of empirical and 
modeled temperature data for rare rock fern 
habitats—We examine microhabitat condi-
tions of two narrowly restricted rock ferns, 
Asplenium viride Huds. and A. rhizophyllum L., 
to highlight the discrepancy between modeled 
climate and empirical measurements for these 
habitat specialists. Both species are calciphilic 
rock ferns and occur predominantly on lime-
stone, in shaded understories (Fig. 1A). In ad-
dition to edaphic specialization, their habitats 
often coincide with topographical extremes on 
both macro and micro scales (sensu Ackerly 
et al., 2010). For example, they are sensitive to 
slope and aspect at the scale of both decame-
ters and centimeters, predominantly occupy-
ing north-  and east- facing slopes. In addition 
to requiring the microtopography provided by 
rock outcrops or similar terrains that are typ-
ically regionally restricted, their habitats often 
represent mesic microsites (sensu McLaughlin 
et  al., 2017). These ferns achieve most luxuri-
ant growth in proximity to the moderating in-
fluence of Great Lakes shorelines, inland lakes, 
conifer swamps, streamsides, mountain peaks, 
sinkholes, glacial cirques, and deep canyons. 
Finally, these ferns occur almost exclusively 
under dense canopy cover, which is crucial 
to maintaining high relative humidity (Chen 
et al., 1999; Lendzion and Leuschner, 2009) and 
has been shown to be more important than air 

temperature or soil moisture for the growth of Polystichum braunii 
(Spenn.) Fée, another rare fern of calcareous substrates that fre-
quently co- occurs with A. viride and A. rhizophyllum (Schwerbrock 
and Leuschner, 2016).

To measure temperature in the fern microsites, 37 Maxim 
Integrated DS1923 iButton Hygrochron temperature/humidity log-
gers were deployed in close proximity to A. viride and A. rhizophyl-
lum at sites in the U.S. states of Wisconsin, Michigan, New York, 
and Vermont, and the Canadian province of Ontario, in the spring 
and summer of 2016, and retrieved approximately one year later. 
The iButtons were set to record temperature and humidity every 
4 h for one year with no rollover, and mounted inside a small sec-
tion of PVC pipe to protect them from direct precipitation, while 
not obstructing the humidity aperture. A neutral gray- colored 
PVC pipe was chosen because it was less conspicuous in the envi-
ronment than white. To capture the fern microsite conditions, the 
pipes were placed as close to the ferns as possible, usually within 
centimeters, typically wedged into mossy crevices of limestone 
boulders (Fig. 1B). The coordinates of the iButtons and associated 

FIGURE  1. (A) Typical habitat supporting both Asplenium viride and A. rhizophyllum, show-
ing limestone boulders associated with the Niagara Escarpment in Michigan’s eastern Upper 
Peninsula. (B) PVC pipe with iButton Hygrochron mounted inside, placed in close proximity to 
A. rhizophyllum.

A

B
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research plots were recorded with a GPS unit, and each site was 
photographed extensively, while the precise location of the iButton 
was sketched and described in field notes. To facilitate relocation, 
an iPad in a waterproof case was taken into the field to display the 
photographs. Upon retrieval of the iButtons, data were downloaded 
using the DS1402D- DR8 Maxim Integrated Blue Dot Receptor.

Of the 37 iButtons placed in the fern microsites, 31 were re-
covered, but only 11 yielded data, representing sites in Wisconsin, 
Michigan, Ontario, and Vermont. For the six not recovered, the 
precise locations were relocated with confidence based on the pho-
tographs. The remaining 20 iButtons either were blank and did not 
register on the receptor, or else had an error message, and were 
likely compromised by extremes in temperature and humidity.

Modeled data from two sources were compared to the iBut-
ton data. PRISM provides data of 4- km resolution that can be ex-
trapolated to correspond to the exact dates of iButton deployment, 
whereas WorldClim data provide 1- km resolution, but are based 
on recent multi- year means. Using GPS coordinates from iButton 
locations, PRISM data were downloaded from the PRISM Climate 
Group (Oregon State University; http://www.prism.oregonstate.edu), 
and WorldClim Bioclimatic variables (Fick and Hijmans, 2017) were 
downloaded using the R package raster version 2.6- 7 (Hijmans and 
van Etten, 2012). These data were then compared to the empirical 
data recorded by the iButtons using a paired t- test. Because climate 
data were only available for the conterminous United States, the 
PRISM comparison was restricted to eight U.S. sites. In some cases, 
the iButtons were retrieved slightly before the full 365 days, in which 
case the monthly mean value was used in place of the missing data. 
Comparisons were made for mean annual temperature, maximum 
temperature of warmest month, minimum temperature of coldest 

month, annual range in temperature, mean temperature of warm-
est quarter, and mean temperature of coldest quarter. Boxplots were 
 generated in R.

A comparison of empirical data to modeled data demonstrates 
that the microhabitats occupied by these ferns buffer extremes in 
temperature (Fig. 2). All comparisons with PRISM were significant 
when α = 0.05, except for mean annual temperature. The strongest 
differences are seen in minimum temperature of coldest month, 
where microclimates average 9.1°C warmer than the model (P = 
0.0004), and maximum temperature of warmest month, where av-
erage microclimates average 7.9°C cooler (P = 0.00003). The min-
ima and maxima may be influenced somewhat by the 4- h sampling 
interval of the iButtons, however, the pattern is upheld by the quar-
terly means, with mean temperature of the coldest quarter 1.6°C 
warmer (P = 0.02) and mean temperature of the warmest quarter 
1.8°C cooler (P = 0.02) for iButton sites.

The greatest difference between the iButton data and the 
WorldClim data (not shown) was for mean temperature of the cold-
est quarter, with the measured sites 5.3°C warmer than the model (t 
= −9.68, df = 10, P < 0.00001). Additionally, iButton measurements 
for mean annual temperature were 1.8°C warmer (t = −7.6, df = 10, 
P < 0.00001). Annual range in temperature was 3.8°C greater for 
WorldClim (t = 2.22, df = 10, P = 0.05), whereas maximum tempera-
ture of warmest month (P = 0.07), minimum temperature of coldest 
month (P = 0.07), and mean temperature of warmest quarter (P = 
0.23) were not significantly different. Although the WorldClim data 
represent a finer scale (1 km) than the PRISM data (4 km), they 
reflect historic means, rather than the exact time period available 
from PRISM, and are therefore less appropriate for predicting cur-
rent climate.

FIGURE 2. A comparison between one year (2016–2017) of empirically derived temperatures from iButton data loggers and modeled temperatures 
from PRISM extrapolations at 4- km resolution for eight microhabitats in Wisconsin, Michigan, and Vermont. Mean annual temperature: t = 0.41, df = 7, 
P = 0.70; mean annual range in temperature: t = 7.82, df = 7, P = 0.0001; maximum temperature of warmest month: t = 9.73, df = 7, P = 0.00003; mini-
mum temperature of coldest month: t = −6.23, df = 7, P = 0.0004; mean temperature of warmest quarter: t = 2.79, df = 7, P = 0.02; mean temperature 
of coldest quarter: t = −2.90, df = 7, P = 0.02. Temperatures are in °C.

http://www.prism.oregonstate.edu
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Although the iButtons were distributed more or less equally be-
tween A. viride and A. rhizophyllum sites, five of the six that were not 
recovered were at A. viride sites. We noted that A. viride frequently 
grows in close proximity to water courses, and animal interference 
is suspected in at least three cases. On other cases, collapsing talus 
slopes, violent spring runoff, or ice- fall may have resulted in iButton 
loss. In the case of the single iButton lost from an A. rhizophyllum 
site, based on our observations, we believe deer may have disturbed 
the site while scraping moss and ferns from 
the boulder. There was also evidence of recent 
human disturbance in the area, which is an-
other possibility. In one case, a hiker retrieved 
a displaced iButton and contacted us using the 
information on the iButton housing. Of the 11 
iButtons that yielded data, only three represent 
A. viride sites. The microsites occupied by this 
species often represented the most extreme en-
vironments, i.e., those that were coolest, most 
humid, at the highest elevations, or with the 
steepest terrain. The nature of these environ-
ments may have played a role in their dispro-
portionate disappearance and failure.

Our results indicate that both correlative 
species distribution models (i.e., based on a 
4- km resolution corresponding to exact dates 
and a 1- km resolution corresponding to recent 
historical means) fail to represent the climatic 
niche of the Asplenium spp. This comparison 
demonstrates that the locations of the ferns 
represented microclimates that were buffered 
against both the highest and lowest tempera-
ture extremes.

Case study 2: Microclimatic influences on the 
phenology of a crop wild relative: Cicer (chick-
peas)—The microclimatic conditions of Cicer 
reticulatum Ladizinsky—the immediate wild 
progenitor of cultivated chickpea, C. arietinum 
L., as well a sister species, C. echinospermum 
P. H. Davis—were studied to develop an under-
standing of the conditions underlying growth 
and phenology. Cicer reticulatum and C. echi-
nospermum occur in savannas and pastures 
in southeastern Turkey (Toker et  al., 2014). 
Microsites can vary from disturbed field edges 
to rock crevices on mountainsides. In general, 
C. echinospermum occurs in lower- elevation 
sites on basaltic soils, whereas C. reticulatum 
occurs at slightly higher elevations and higher 
pH sandstone-  or limestone- derived soils. With 
a wide range of possible habitats in steep ter-
rain, interpolated climates are not likely to ac-
curately predict microclimatic conditions.

Seventeen populations of wild chickpea were 
chosen to study variation in microsite condi-
tions. For each population (described in von 
Wettberg et  al., 2018), five Maxim Integrated 
DS1921 iButton Thermochron temperature 
loggers and five Maxim Integrated DS1923 
iButton Hygrochron temperature/humidity 

loggers were deployed at a depth of 5 cm below the soil surface at 
random, with a total sample of 170 data loggers placed at the study 
site (Fig. 3B). Thermochrons were protected by iButton waterproof 
capsules (Maxim Integrated; Fig.  3A) to prevent exposure to soil 
moisture. Hygrochrons were placed in the soil without protection. 
Initial placement in field sites occurred in October 2013. To aid 
in recovery, GPS coordinates and digital photographs were taken, 
and small rock cairns near the site or spray- painted markings on 

FIGURE  3. (A) Placement of iButton Hygrochrons and Thermochrons (within black iButton 
capsules) into soils 5 cm below the surface near Cicer plants. (B) Typical wild Cicer habitat in 
southeastern Turkey (from the Cudi habitat in von Wettberg et al., 2018).

A

B
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nearby rocks were made. Sensors were first retrieved at the end of 
May 2014 and returned to the soil after data were downloaded. They 
were excavated again in October 2014 at four sites. Although ini-
tially placed with hopes of further recovery, the declining security 
situation in southeastern Turkey and neighboring Syria meant we 
did not attempt to further recover the data loggers. Upon retrieval 
of the iButtons in May and October 2014, data were downloaded 
using the DS1402D- DR8 Maxim Integrated Blue Dot Receptor. 
Data were processed with custom MATLAB code (available on 
GitHub: https://github.com/ericvonwettberg/iButtons) due to the 
large number of files involved. An annotated user manual is also 
available on GitHub.

A primary aim was to use microsite estimates of growth con-
ditions to predict flowering time and vernalization responsiveness. 
Flowering time is a key trait adapting chickpea varieties to different 
climatic zones (Berger et al., 2004, 2006). We converted tempera-
tures to modified photothermal units, following Chew et al. (2012) 
and as reported in von Wettberg et al. (2018). Although the wild 
Cicer L. species closely related to chickpea have been thought to be 
vernalization responsive like other Mediterranean winter annuals, 
loss of vernalization is thought to have been selected to allow chick-
pea to be grown as a spring annual (Abbo et al., 2003). However, 
uncovering variation in vernalization sensitivity in wild Cicer could 
allow for the expanded use of fall- planted chickpea (Pinhasi van-
Oss et al., 2016) and facilitate rapid introgression of wild germplasm 
(von Wettberg et al., 2018). We assessed the relationship between 
coldest temperature measured with iButtons and the average ther-
mal minima from the WorldClim Version 1 data set (averages from 
1960–1990) with Pearson correlation.

We also deployed iButton Thermochrons and Hygrochrons as 
we amplified seeds of the wild Cicer collection in common garden 
settings. These data were intended to help calibrate models of flow-
ering time variation (following Chew et  al., 2012) and to validate 
measurements from Turkish sites in more controlled settings. We 
deployed sensors in outdoor wild Cicer plantings at the University 
of California, Davis, the primary site of seed amplification, as well 
as the USDA Spillman Farm in Pullman, Washington (four sensors 
in air and soil), and at four sites in South Florida (a private farm, 
January to May 2014 [nine sensors]; USDA Chapman Field, October 
2015 to February 2016 [two sensors; air and soil]; Pinecrest School, 
November 2015 to February 2016 [two sensors; air and soil]; Fairchild 
Tropical Botanic Garden, December 2015 to March 2016 [six sen-
sors; air and soil]). In the first Florida planting, we paired the iButton 
sensor measurements with soil volumetric water content and tem-
perature measurements from a Decagon EM50 soil moisture sensor 
(Decagon Devices, Pullman, Washington, USA [now Meter Co.]).

We were able to recover 126 loggers of the 170 placed in the field 
in Turkey in May 2014. Recovery varied substantially between sites. 
Although not assessed, our recovery appeared to be substantially 
lower in sites with shallower soils, where the initial burial was more 
difficult to perform. This may be due to the soil depth, or inabil-
ity of one of us (E.J.B.v.W.) to distinguish rock cairns from natural 
rock piles. At three sites (Kalkan, Egil, Karabache), construction of 
dirt roads (a preliminary step toward converting pastures to fields 
that can be plowed and used for irrigated maize or cotton) led to 
bulldozing of the habitat and the loss of the sensors. In the highest- 
elevation site, the loggers were recovered from the soil surface, pre-
sumably due to the action of frost.

Modified photothermal units have been previously reported 
from this data set (von Wettberg et al., 2018), and flowering time 

models are being developed to explore associations of particular 
single nucleotide variants that segregate in the wild populations 
with phenology in common garden settings (Kozlov et al., 2019). 
We did not detect a significant correlation between the iButton tem-
perature minima and temperature minima from 1960–1990 in the 
field in Turkey (r = 0.32, P = 0.22), likely due to microsite effects 
such as the canopy cover, slope, and aspects of sites, as well as water 
availability and soil water- holding capacity during the growing sea-
son. The lack of correlation suggests that site of origin data may not 
accurately predict potential variation in thresholds in temperature 
regimes required for vernalization. We did detect a significant as-
sociation between Thermochron temperature and Decagon EM50 
temperature (r = 0.866, P < 0.0001) in common garden settings in 
the United States. No association was detected between Hygrochron 
relative humidity and soil volumetric water content (r = 0.128, P = 
0.172) in our common garden settings.

Case study 3: Microhabitat effects of land-based, utility-scale 
solar arrays—Land- based utility- scale solar energy (typically ≥1 
MW, with ~2 ha of land disturbance per megawatt) ranks among 
the renewable energy systems with the greatest potential to mit-
igate climate change (Hernandez et al., 2015). The contribution 
of solar energy to global power production is rapidly growing, 
and photovoltaic (PV) arrays have been identified as a change in 
land use that can merge carbon- neutral energy generation with 
habitat conservation or improvement (Armstrong et  al., 2014; 
Hernandez et al., 2015). The placement of PV arrays creates visi-
ble differences in precipitation inputs and shading that vary sea-
sonally (Fig.  4). Regular spacing between PV array panels can 
create a heterogeneous microclimatic regime (Armstrong et al., 
2016) that may promote the formation of a novel patchy resource 
and organismal gradients. For example, PV arrays in the south-
western United States have been found to generate strong heat 
island effect during the evening (Barron- Gafford et  al., 2016). 
However, our understanding of how land- based utility- scale 
solar energy arrays impact surface microclimatic features and 
plant–soil interactions remains limited (Armstrong et al., 2014, 
2016; Hernandez et al., 2014).

We studied three PV arrays designed to be community solar 
providers in Windham County, Vermont, USA, from May 2016 
to April 2017 (Sistla et  al., unpublished data). Each site varied in 
soil characteristics, plant community composition, and land use 
history. The array panels were south facing and arranged in east–
west rows with panel height ranging from 1.5 to 2.5 m and site age 
ranging from 1–3 years old. To determine how PV arrays affect ter-
restrial microclimate in the temperate zone, we used a haphazardly 
selected block design consisting of two 1.5- m2 plots, one centered 
under the PV panel (U) and one centered in the panel- free row 
adjacent (A) in each of the three sites at the Vermont Agricultural 
Center. iButton Thermochrons (DS1921G- F5#) were used to mea-
sure soil temperature, and iButton Hygrochron temperature/hu-
midity loggers (DS1923) measured air temperature and humidity 
at 1- h intervals. One Hygrochron was suspended 40 cm above the 
ground in netting within a radiation shield in the A and U blocks 
that hosted a micrometeorological station at each site (three U/A 
Hygrochron pairs consisting of six sensors), which also measured 
photosynthetically active radiation (PAR) using sensors mounted 
at 1.2 m (Onset Computer Corporation, Bourne, Massachusetts, 
USA). Thermochrons measuring soil temperature were protected in 
15- mL conical centrifuge tubes to facilitate retrieval and protect the 
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FIGURE 4. Images of land- based photovoltaic arrays in the summer (A) and winter (B) in Vermont, USA. The array panels cause a heterogeneous 
shading and precipitation regime that, over the two decades or more lifespan of the arrays, may drive the formation of persistent novel microhabitats.

A

B
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sensors from moisture and were buried 10 cm deep in both the U 
and A plots with the weather station, as well as in an additional U/A 
plot pair haphazardly selected at each site (six U/A Thermochron 
pairs consisting of 12 sensors).

Data were periodically downloaded on site throughout the 
study period. All but one of the iButtons (11 Thermochrons and six 
Hygrochrons) were retrieved after 11 months deployment; none of 
these Thermochrons appeared to be significantly shifted in the soil pro-
file. One Thermochron could not be located during the January data 
download and was not subsequently found. Gaps in the data set reflect 
field deployment errors that were corrected at the following site visit.

Microclimate factors (soil temperature, air temperature, and rel-
ative humidity) were separated by site and season (spring [2016], 
summer [2016], fall [2016], winter [2016–2017], spring [2017]) and 
further split into day and night, and outliers (defined as any point 
more than 1.5 times the interquartile range above the third quartile 
or below the first quartile) were identified to check for the potential 
for disturbance of the data loggers (i.e., snow accumulation on the 
Hygrochron sensors). Removal of outliers did not affect our abil-
ity to detect panel or time effects on the microclimate factors mea-
sured, and all data were included in the analysis. The data were then 
aggregated by hour and day of year. A repeated measures ANOVA 
was used to test the effects of panel influence, time (days within a 
season), site, and their interaction on relative humidity and air tem-
perature for each season and diurnal period. Soil temperature data 
were treated equivalently, but analyzed with a mixed model, with 

block treated as a random effect. All statistical analyses were per-
formed in RStudio (version 1.0.153; R version 3.5.1 [2018- 07- 02]).

Notably, unlike more hot and arid PV array sites (Barron- 
Gafford et al., 2016), we did not detect a heat island effect of the 
arrays; despite the marked effects of the panel on soil temperature, 
no significant panel effect on air temperature or relative humidity 
was detected in fall (2016), winter (2016–2017), or spring (2017) at 
any of the three sites. There was a marginally significant increase in 
relative humidity (F = 3.3, P = 0.07) and reduction in air tempera-
ture (F = 3.1, P = 0.08) under the array panels in the spring (2016), 
but no significant site interaction or site- by- panel interaction was 
detected. In contrast to air temperature and relative humidity, there 
was a clear panel effect on soil temperature at 10- cm depth across 
all sites, seasons, and diurnal periods (P < 0.01 in all cases) and site- 
by- panel interactions in all seasons except spring (2016) (P < 0.05 
in all cases) (Fig. 5).

In late spring and summer, the A soil was warmer than U at all 
sites, which correlates with greater PAR exposure. The U and A soil 
temperature began converging in the late summer and into the fall 
as the difference in PAR between the U and A areas declined. In the 
fall, U areas had warmer soil temperatures until the first major snow-
fall event, when A became warmer than U, likely reflecting snow in-
sulation of the A soil relative to the precipitation- intercepted U areas 
(Monson et al., 2006). In the winter, A areas tended to be warmer 
than those beneath the panels because of increased snow pack. 
Surprisingly, this effect was reversed at the Vermont Agricultural 

FIGURE 5. Soil temperature trends from March 2016 through February 2017. A mixed- model repeated measures ANOVA for each season is pre-
sented. P = panel effect, T = day of year effect, PxT = interaction between panel and time, S = site effect, PxS = interaction between site and panel.
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Center, which had consistently warmer soil in the U areas despite 
less snow cover, a pattern that may reflect higher soil moisture in the 
U areas supplied by subterranean water flow.

Soil decomposer activities over the winter are a critical regulator 
of plant- available nutrients following thaw (Aanderud et al., 2013); 
therefore, changes to winter soil temperature regimes within an ar-
ray site (Fig. 5) may be particularly relevant to the plant productiv-
ity and community dynamics during the growing season. A suite 
of other biological changes observed in the U versus A areas in our 
array study sites (Sistla et al., unpublished data) suggest that these 
microhabitat changes that affect soil temperature but are decoupled 
from comparable changes in air temperature can promote cascad-
ing effects on the plant–soil system even relatively shortly after a 
change in land use such as array development.

DISCUSSION

Diverse applications of iButtons

Although iButtons were designed for commercial applications re-
lated to product management (and now number 175 million in 
circulation), the availability of these relatively inexpensive data 
loggers has inadvertently summoned a wave of novel research in 
such disciplines as ecology, physiology, and earth science. Several 
comparable products are commercially available, such as the TidbiT 
(Onset Computer Corporation), Atmos 41 (Meter Group, Pullman, 
Washington, USA), and iButton Thermochron temperature data 
loggers and Hygrochron temperature and humidity data loggers 
from Maxim Integrated. A number of iButton models are avail-
able, optimized for different applications, with different tempera-
ture ranges, accuracy, resolution, and sampling rates, and prices 
vary accordingly. Their accuracy, well within the ±1·0°C claimed 
by the manufacturer, has been upheld by independent assessment 
(Hubbart et al., 2005), with improved resolution available for cer-
tain models. For applications where air temperature measurements 
are required, solar radiation shields control for direct heating of the 
sensor by sunlight. For a thorough review of commercially available 
radiation shields, see Hubbart (2005), and for an inexpensive alter-
native, see Hubbart (2011). Mittra et  al. (2013) provide a helpful 
step- by- step technical guide to using iButtons in the field.

Biological applications of this technology include the study of 
animal behavioral physiology (Brower et al., 2008; Thompson et al., 
2016), hibernation (Rasmussen and Litzgus, 2010; Vanderwolf 
et al., 2012; Zervanos et al., 2013), and thermal tolerance (Denny 
et al., 2011). Plant ecologists have employed iButtons to character-
ize extreme microclimates (Chambers and Emery, 2016), which can 
then inform experimental design. Understanding the complex and 
nuanced thermal environment experienced at or below the soil sur-
face can illuminate mechanisms underpinning species interactions, 
because microclimatic conditions are an important regulator of 
whether species facilitate or compete with one another (Spasojevic 
et al., 2014; Copeland and Harrison, 2017).

Data loggers also have broad applications in the earth sciences 
and have been used to make precise measurements of snow accu-
mulation and melt (Lundquist and Lott, 2008), which has major im-
plications for plant life at high latitudes and elevations. Hydrologists 
have used iButtons to gauge groundwater and surface water inter-
actions (Naranjo and Turcotte, 2015), which could improve our 
understanding of riparian vegetation ecology, and the dynamics 

of the rhizosphere more generally. We demonstrate their utility for 
identifying and tracking the development of novel microhabitats 
with land use changes resulting from the built environment and ag-
ricultural areas, which may facilitate unique plant assemblages by 
affecting organic matter decomposition and moisture availability.

In addition to the myriad applications of iButtons and similar 
sensors for the field botanist, they also have utility in experimen-
tal laboratory settings. Greenhouses are notorious for varying mi-
croclimatic conditions, which can be a major source of unwanted 
variation in experiments and may negatively impact crop produc-
tion. Deployment of data loggers can help greenhouse managers 
first document, then optimize growing conditions throughout the 
greenhouse (Kutta and Hubbart, 2014; Vallone et al., 2017).

Experimental considerations

A major benefit of iButtons over previous technology is their com-
pact size and relative affordability. This enables data to be collected 
inconspicuously in areas frequented by humans or other animals. 
In southeastern Turkey, our sites are exposed and used by local 
shepherds, thus making them unsuitable for standard soil moisture 
loggers, as they would almost certainly be removed by any curi-
ous passersby. Because of this, we did not use PVC pipes or other 
protections and obvious markings to assist with iButton recovery. 
Unfortunately, our low recovery rate in Turkey was exacerbated by 
inadequate marking of microsite placements. A few of the sites used 
for the rock fern study were popular hiking trails. Although in most 
cases every effort was made to obscure the iButton, they were some-
times discovered. We included contact information, written in per-
manent marker on the PVC housing, and it resulted in the return 
of one iButton that apparently became dislodged. Stopping short of 
elaborate and potentially destructive restraints, preventing iButton 
loss to raccoons proves more challenging.

For the chickpea study, we used Hygrochron data loggers with 
the expectation that they would provide correlative data on soil 
moisture we could use from relative humidity estimates. Wild 
Cicer grows in rock crevices and other complex habitats where 
soil moisture is particularly difficult to measure but likely quite 
important to the plant. However, during the rainy Mediterranean 
winter, the Hygrochrons failed to accurately record relative humid-
ity while soils were saturated, a design limitation of the technol-
ogy. Furthermore, we did not find a significant correlation with 
soil moisture. In the rock fern study, we mounted the Hygrochrons 
within a small section of PVC pipe that protected them from direct 
precipitation and allowed them to drain, thereby avoiding satura-
tion of the sensor. Nevertheless, we experienced a 65% failure rate 
of iButton Hygrochrons after a one- year deployment.

Although iButton Thermochrons are designed to be wa-
terproof, failures have been noted (Wolaver and Sharp, 2007), 
especially when submerged for long periods or at depth. For 
applications in saturated soils, or underwater, a waterproof 
iButton capsule (model DS9107) is available from the manu-
facturer. Another effective and affordable waterproofing option 
is Plasti Dip (Plasti Dip International, Blaine, Minnesota, USA) 
(Lundquist and Lott, 2008), although it should be noted that this 
coating has a minor influence on temperature readings (Roznik 
and Alford, 2012). Securing buried iButton Thermochrons in 
conical tubes proved to minimize data logger failure and loss. 
Unfortunately, iButton Hygrochrons are apparently much more 
susceptible to failure in humid or wet conditions (Vanderwolf 
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et  al., 2012), possibly because of the humidity sensor aperture, 
which cannot be covered. Because of this, use of unprotected 
iButtons is not recommended in settings that may experience sat-
urated conditions or flooding. Therefore, the benefit of recording 
both temperature and humidity data with a single device should 
be weighed against the risk of Hygrochron failure in the absence 
of waterproofing options available for the Thermochron, and the 
unclear relationship of soil relative humidity to water available 
for plant growth. Although the Hygrochron function may be 
tempting to use as a proxy for measuring soil moisture, we advo-
cate that this application be used cautiously, if at all.

Conclusions

Temperature and humidity data loggers such as iButtons are ef-
fective tools for assessing fine- scale climatic variation in wildland 
settings, agricultural areas, and the built environment. We suggest 
they may be utilized for improved parameterization of phenolog-
ical models, which may contribute to agricultural improvements. 
We demonstrate their utility for characterizing fine- scale effects of 
anthropogenic structures on soil temperatures, providing the foun-
dation for a more nuanced understanding of the ecological ramifi-
cations of the built environment. We show that iButtons can play an 
important role in capturing microclimate conditions that may be as-
sociated with refugia, a major limitation of most climate models. By 
incorporating the influence of fine- scale topography and hydrology, 
the accuracy of climate models will greatly improve, and empirical 
measurements from data loggers such as iButtons can play an im-
portant role in model validation. Finally, areas that include rock out-
crops or other features associated with mesic microclimates deserve 
careful consideration for conservation prioritization, as these areas 
may provide microrefugia that buffer species against climate change.
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